

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Chapter 7

Multiple Forms, Modules,

and Menus

Copyright © 2011 Pearson Addison-Wesley

Introduction

• This chapter demonstrates how to:

– Add multiple forms to a project

– Create a module to hold procedures and functions

– Create a menu system with commands and
submenus

– Create context menus that appear when the user
right-clicks on an item

Chapter 7 – Slide 3

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 7.1

MULTIPLE FORMS

Visual Basic projects can have multiple forms. The startup form is

the form that is displayed when the project executes. Other forms

in a project are displayed by programming statements.

Copyright © 2011 Pearson Addison-Wesley

Windows Forms Applications

• Windows Forms applications are not limited to
only a single form

• You may create multiple forms
– To use as dialog boxes
– Display error messages
– And so on

• Windows Forms applications typically have one
form called the startup form
– Automatically displayed when the application starts
– Assigned to the first form by default
– Can be assigned to any form in the project

Chapter 7 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

Form Files and Form Names

• Each form has a Name property

– Set to Form1 by default

• Each form also has a file name

– Stores the code associated with the form

– Viewed in the Code window

– Has the same name as the form

– Followed by the .vb extension

– Shown in the Solution Explorer window

Chapter 7 – Slide 6

Copyright © 2011 Pearson Addison-Wesley

Renaming an Existing Form File

• Always use the Solution Explorer
window to change the file name
and the form’s Name property
will change automatically

• To rename a form file:

– Right-click file name in
Solution Explorer

– Select Rename from the
menu

– Type the new name for the
form

– Be sure to keep the .vb
extension

Chapter 7 – Slide 7

Remember to
give each form
a meaningful name

Copyright © 2011 Pearson Addison-Wesley

Adding a New Form to a Project

• To add a new form to a project:
– Click Project on the Visual Studio menu bar, and then select Add

Windows Form . . . The Add New Item window appears

– Enter the new Name

in the Name text box

– Click the Add button

• A new blank form is

added to your project

Chapter 7 – Slide 8

Copyright © 2011 Pearson Addison-Wesley

Switching between Forms and Form Code

• To switch to another form:

– Double-click the form’s entry
in the Solution Explorer
window

• To switch between forms or code:

– Use the tabs along the top of
the Designer window

Chapter 7 – Slide 9

Form Code Form Code

Switching only works at design time

Copyright © 2011 Pearson Addison-Wesley

Removing a Form

• To remove a form from a project
and delete its file from the disk:

– Right-click the form’s entry in
the Solution Explorer window

– On the pop-up menu, click
Delete

• To remove a form from a project
but leave its file on disk*:

– Right-click the form’s entry in
the Solution Explorer window

– On the pop-up menu, click
Exclude From Project

Chapter 7 – Slide 10

*Not available in Visual Basic Express

Copyright © 2011 Pearson Addison-Wesley

Designating the Startup Form

• To make another form the startup
form:

– Right-click the project name
in the Solution Explorer
window

– On the pop-up menu, click
Properties, the properties
page appears

– Select the Application tab

– Click the down arrow in the
Startup Form drop-down list

– Select a form from the list of
available forms

Chapter 7 – Slide 11

Copyright © 2011 Pearson Addison-Wesley

Creating an Instance of a Form

• The form design is a class
– It’s only a design or

description of a form

– Think of it like a blueprint

• A blueprint is a detailed
description of a house

• A blueprint is not a house

• The form design can be used to
create instances of the form

– Like building a house from the
blueprint

• To display a form, we must first
create an instance of the form

Chapter 7 – Slide 12

Public Class FormName

End Class

Copyright © 2011 Pearson Addison-Wesley

Displaying a Form

• The first step is to create an instance
of the form with the Dim statement

– Here is the general format:

• ObjectVariable is the name of an
object variable that references an
instance of the form

• An object variable

– Holds the memory address of an
object

– Allows you to work with the
object

• ClassName is the form’s class name

• The following statement creates an
instance of the ErrorForm form in
memory:

• frmError variable references the
ErrorForm object

• Statement does not cause the form
to be displayed on the screen

• To display the form on the screen:

– Use the object variable to invoke
one of the form’s methods

Chapter 7 – Slide 13

Dim ObjectVariable As New ClassName Dim frmError As New ErrorForm

The prefix frm is used to indicate
that the variable references a form

Copyright © 2011 Pearson Addison-Wesley

The ShowDialog and Show Methods

• If a modal form is displayed:

– No other form in the
application can receive the
focus until the form is closed

• The ShowDialog method
causes a form to be displayed as a
modal form

– Here is the general format:

• For example:

• If a modeless form is displayed:

– The user is allowed to switch
focus to another form while it
is displayed

• The Show method causes a form
to be displayed as a modeless
form

– Here is the general format:

• For example:

Chapter 7 – Slide 14

ObjectVariable.ShowDialog() ObjectVariable.Show()

Dim frmError As New ErrorForm
frmError.ShowDialog()

Dim frmError As New ErrorForm
frmError.Show()

Copyright © 2011 Pearson Addison-Wesley

Closing a Form with the Close Method

• The Close method closes a form and removes its
visual part from memory

• A form closes itself using the keyword Me

• For example:

• Causes the current instance of the form to call its
own Close method, thus closing the form

Chapter 7 – Slide 15

Me.Close()

The word Me in Visual Basic is a special variable
that references the currently executing object

Copyright © 2011 Pearson Addison-Wesley

The Hide Method

• The Hide method

– Makes a form or control invisible

– Does not remove it from memory

– Similar to setting the Visible property to False

• A form uses the Me keyword to call its own Hide method

• For example:

• To redisplay a hidden form:

– Use the ShowDialog or Show methods

• Tutorial 7-1 creates a simple application that has two forms

Chapter 7 – Slide 16

Me.Hide()

Copyright © 2011 Pearson Addison-Wesley

More on Modal and Modeless Forms

• When a procedure calls the
ShowDialog method

– Display of a modal form
causes execution of calling
statements to halt until form
is closed

• When a procedure calls the Show
method

– Display of a modeless form
allows execution to continue
uninterrupted

• Tutorial 7-2 demonstrates this
difference between modal and
modeless forms

Chapter 7 – Slide 17

statement
statement
frmMessage.ShowDialog()
statement Halt!
statement Halt!
statement Halt!

statement
statement
frmMessage.Show()
statement Go!
statement Go!
statement Go!

Copyright © 2011 Pearson Addison-Wesley

The Load Event

• The Load event is triggered just before the form is initially
displayed

• Any code needed to prepare the form prior to display should
be in the Load event

• If some controls should not be visible initially, set their Visible
property in the Load event

• Double click on a blank area of the form to set up a Load
event as shown below

Chapter 7 – Slide 18

Private Sub MainForm_Load(…) Handles MyBase.Load

End Sub

Copyright © 2011 Pearson Addison-Wesley

The Activated Event

• The Activated event occurs when the user switches to
the form from another form or application

• To create an Activated event handler, follow these steps:
1. Click the class drop-down list, which appears at the

top left of the Code window
2. On the drop-down list, select (FormName Events),

where FormName is the name of the form
3. Click the method drop-down list, which appears at

the top right of the Code window, and select
Activated

• After completing these steps, a code template for the
Activated event handler is created in the Code window

Chapter 7 – Slide 19

Copyright © 2011 Pearson Addison-Wesley

The FormClosing Event

• The FormClosing event is triggered as the form is being
closed, but before it has closed

• The FormClosing event can be used to ask the user if they
really want the form closed

• To create an FormClosing event handler, follow these steps:
1. Click the class drop-down list, which appears at the top left of the Code

window

2. On the drop-down list, select (FormName Events), where FormName is
the name of the form

3. Click the method drop-down list, which appears at the top right of the
Code window, and select FormClosing

• After completing these steps, a code template for the
FormClosing event handler is created in the Code window

Chapter 7 – Slide 20

Copyright © 2011 Pearson Addison-Wesley

The FormClosed Event

• The FormClosed event occurs after a form has closed.

• Create a FormClosed event handler by following these steps:
1. Click the class drop-down list, which appears at the top left of the Code

window

2. On the drop-down list, select (FormName Events), where FormName is
the name of the form

3. Click the method drop-down list, which appears at the top right of the
Code window, and select FormClosed

• After completing these steps, a code template for the
FormClosed event handler is created in the Code window

Chapter 7 – Slide 21

You cannot prevent a form from closing with the FormClosed event handler.
You must use the FormClosing event handler to prevent a form from closing.

Copyright © 2011 Pearson Addison-Wesley

Accessing Controls on a Different Form

• Once you have created an instance of a form, you can access
controls on that form in code

– The following code shows how you can

• Create an instance of a form

• Assign a value to the form’s label control’s Text property

• Display the form in modal style

• Tutorial 7-3 demonstrates accessing controls on a different form

Chapter 7 – Slide 22

Dim frmGreetings As New GreetingsForm
frmGreetings.lblMessage.Text = "Good day!"
frmGreetings.ShowDialog()

Copyright © 2011 Pearson Addison-Wesley

Class-Level Variables in a Form

• Class-level variables are declared Private by the Dim statement

• Private variables are not accessible by code in other forms

• Use the Public keyword to make a class-level variable available to methods
outside the class

• Explicitly declare class-level variables with the Private keyword to make
your source code more self-documenting

Chapter 7 – Slide 23

Public dblTotal As Double ' Class-level variable

Dim dblTotal As Double ' Class-level variable

Private dblTotal As Double ' Class-level variable

Copyright © 2011 Pearson Addison-Wesley

Using Private and Public Procedures in a Form

• Procedures, by default, are Public

• They can be accessed by code outside their
form

• To make a procedure invisible outside its own
form, declare it to be Private

• You should always make the procedures in a
form private
– Unless you specifically want statements outside

the form to execute the procedure

Chapter 7 – Slide 24

Copyright © 2011 Pearson Addison-Wesley

Using a Form in More Than One Project

• After a form has been created and saved to a file,
it may be used in other projects

• Follow these steps to add an existing form to a
project:
1. With the receiving project open in Visual Studio, click

Project on the menu bar, and then click Add Existing
Item

2. The Add Existing Item dialog box appears
3. Locate the form file that you want to add to the

project, select it and click the Open button

• A copy of the form is now added to the project

Chapter 7 – Slide 25

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 7.2

MODULES

A module contains code—declarations and procedures—that are

used by other files in a project.

Copyright © 2011 Pearson Addison-Wesley

What is a Module?

• A module is a Visual Basic file that contains only code

– General purpose procedures, functions, and
declarations of variables and constants

– Can be accessed by all forms in the same project

– No event handlers

– Stored in files that end with the .vb extension

– Appears in the Solution Explorer along with entries
for the project’s form files

Chapter 7 – Slide 27

Copyright © 2011 Pearson Addison-Wesley

Module Names and Module Files

• A module

– begins with a Module statement

– ends with an End Module statement

• Here is the general format:

• ModuleName is the name of the module

– Can be any valid identifier

– That describes its purpose

• Code is stored in a file that is named with the .vb extension

• Normally, the name of the file is the same as the name of the module

Chapter 7 – Slide 28

Module ModuleName
[Module Contents]

End Module

Copyright © 2011 Pearson Addison-Wesley

Example Module

Chapter 7 – Slide 29

• The following code shows the contents of a module named
RetailMath

Module RetailMath
' Global constant for the tax rate
Public Const decTAX_RATE As Decimal = 0.07D

' The SalesTax function returns the sales tax on a purchase.
Public Function SalesTax(ByVal decPurchase As Decimal) As Decimal

Return decPurchase * decTAX_RATE
End Function

End Module

Copyright © 2011 Pearson Addison-Wesley

Adding a Module

• Follow these steps to add a module to a project:

1. Click Project on the menu bar and then click Add
Module. The Add New Item windows appears

2. Change the default name that appears in the Name
text box to the name you wish to give the new
module file

3. Click the Add button

• A new empty module will be added to your project

• The module is displayed in the Code window

• An entry for the module appears in the Solution Explorer
window

Chapter 7 – Slide 30

Copyright © 2011 Pearson Addison-Wesley

Module-Level Variables

• A module-level variable is a variable that is declared inside a
module, but not inside a procedure or function

• The same rules about the scope of class-level variables in a form
apply to module-level variables in a module

• Variables with module scope are declared with Dim or Private
– Accessible to any function or procedure in the module
– Not accessible to statements outside of the module

• A global variable is declared with the Public keyword
– Accessible to any statement in the application
– Some programmers prefix global variables with g_

• Tutorial 7-4 examines an application that uses a module

Chapter 7 – Slide 31

Public g_decPurchaseAmount As Decimal ' Global variable

Copyright © 2011 Pearson Addison-Wesley

Using a Module in More Than One Project

• It is possible to use more than one module in a project

• Suppose you want to add an existing module to a new
project

• Follow these steps to add an existing standard module
to a project:
1. Click Project on the menu bar, and then click Add Existing

Item. The Add Existing Item dialog box appears

2. Use the dialog box to locate the module file you want to
add to the project. When you locate the file, select it and
click the Open button

• The module is now added to the project

Chapter 7 – Slide 32

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 7.3

MENUS

Visual Basic allows you to create a system of drop-down menus for

any form in your application. You use the menu designer to create a

menu system.

Copyright © 2011 Pearson Addison-Wesley

Menu Systems

• A menu system is a collection of commands
organized in one or more drop-down menus

– commonly used when an application has several
options for the user to choose from

• The menu designer allows you to visually
create a custom menu system

– for any form in an application

Chapter 7 – Slide 34

Copyright © 2011 Pearson Addison-Wesley

Components of a Menu System

• Each drop-down menu has a menu name
• Each drop-down menu has a list of actions or menu

commands that can be performed
• Some commands may lead to a submenu

Chapter 7 – Slide 35

Copyright © 2011 Pearson Addison-Wesley

Components of a Menu System

• Actions may be performed using a key or key combination called a
shortcut key

• A checked menu command toggles between the checked (if on) and
unchecked (if off) states

• A separator bar helps group similar commands

Chapter 7 – Slide 36

Copyright © 2011 Pearson Addison-Wesley

MenuStrip Control

• A MenuStrip control adds a menu to a form
– Double-click on the MenuStrip icon in the Menus

& Toolbars section of the Toolbox

• The MenuStrip control is displayed in the
component tray (bottom of Design window)

• A MenuStrip can have many
ToolStripMenuItem objects:
– Each represents a single menu command
– Name property - used by VB to identify it
– Text property – text displayed to the user

Chapter 7 – Slide 37

Copyright © 2011 Pearson Addison-Wesley

How to Use the Menu Designer

Chapter 7 – Slide 38

The word File has
been typed as
the text for the
first menu item

Select the box to
enter the next
menu item

Copyright © 2011 Pearson Addison-Wesley

ToolStripMenuItem Object Names

• It is recommended that you change the
default value of the Name property so that it

– Begins with the mnu prefix

– Reflects the Text property and position in the
menu hierarchy

• mnuFile

• mnuFileSave

• mnuFilePrint

• mnuFileExit

Chapter 7 – Slide 39

Copyright © 2011 Pearson Addison-Wesley

Shortcut Keys

• Combination of keys
that cause a menu
command to execute

– Ctrl + C to copy an item
to the clipboard

– Set with the
ShortcutKeys property

– Displayed only if the
ShowShortcut property
is set to True

Chapter 7 – Slide 40

Copyright © 2011 Pearson Addison-Wesley

Checked Menu Items

• Turns a feature on or off

– For example, an alarm for a clock

• To create a checked menu item:

– Set CheckOnClick property to True

• Set Checked property to True if feature should be on
when the form is initially displayed

Chapter 7 – Slide 41

If mnuSettingsAlarm.Checked = True Then
MessageBox.Show("WAKE UP!")

End If

Copyright © 2011 Pearson Addison-Wesley

Disabled Menu Items

• A menu item is grayed out (disabled) with the
Enabled property, for example:

– Paste option is initially disabled and only enabled
after something is cut or copied

– Code initially disables the Paste option

– Following a cut or copy, Paste is enabled

Chapter 7 – Slide 42

mnuEditPaste.Enabled = False

mnuEditPaste.Enabled = True

Copyright © 2011 Pearson Addison-Wesley

Adding Separator Bars

• Right-click menu item, select Insert Separator

– A separator bar will be inserted above the menu
item

• Or type a hyphen (-) as a menu item’s Text
property

Chapter 7 – Slide 43

Copyright © 2011 Pearson Addison-Wesley

Submenus

• When selecting a menu
item in the designer, a
Type Here box appears
to the right
– Begin a submenu by

setting up this menu
item

• If a menu item has a
submenu, a solid right-
pointing arrow()will
be shown

Chapter 7 – Slide 44

Type here to add
a submenu item

Copyright © 2011 Pearson Addison-Wesley

Inserting, Deleting, And Rearranging Menu
Items

• To insert a new menu item
– Right-click an existing menu item
– Select Insert then MenuItem from pop-up menu
– A new menu item will be inserted above the existing menu

item

• To delete a menu item
– Right-click on the item
– Choose Delete from the pop-up menu
– Or select the menu item and press the Delete key

• To rearrange a menu item
– Simply select the menu item in the menu designer and

drag it to the desired location

Chapter 7 – Slide 45

Copyright © 2011 Pearson Addison-Wesley

ToolStripMenuItem Click Event

• Menus and submenus require no code

• Commands must have a click event procedure
– Double click on the menu item

– Event procedure created in the code window

– Programmer supplies the code to execute

• Suppose a menu system has a File menu with an Exit
command named mnuFileExit

Chapter 7 – Slide 46

Private Sub mnuFileExit_Click(...) Handles mnuFileExit.Click
' Close the form.
Me.Close()

End Sub

Copyright © 2011 Pearson Addison-Wesley

Standard Menu Items

• Most applications to have the following menu items
– File as the leftmost item on the menu strip

• Access key Alt + F
– An Exit command on the File menu

• Access key Alt + X
• Shortcut key Alt + Q (optional)

– Help as the rightmost item on the menu strip
• Access key Alt + H

– An About command on the Help menu
• Access key Alt + A
• Displays an About box

• Tutorial 7-5 demonstrates how to build a simple menu system

Chapter 7 – Slide 47

Copyright © 2011 Pearson Addison-Wesley

Context Menus

• A context menu, or pop-up menu, is displayed when the user
right-clicks a form or control

• To create a context menu
– Double-click the ContextMenuStrip icon in the Toolbox window

– A ContextMenuStrip control appears in the component tray

– Change the ContextMenuStrip control’s default Name property

– Add menu items with the menu designer

– Create click event procedures for the menu items

– Associate the context menu with a control

– Set the control’s ContextMenuStrip property to the name of the
ContextMenuStrip control

Chapter 7 – Slide 48

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 7.4

FOCUS ON PROBLEM SOLVING: BUILDING THE HIGH
ADVENTURE TRAVEL AGENCY PRICE QUOTE APPLICATION

In this section you build an application for the High Adventure

Travel Agency. The application uses multiple forms, a module,

and a menu system.

Copyright © 2011 Pearson Addison-Wesley

The MainForm Form

Chapter 7 – Slide 50

Copyright © 2011 Pearson Addison-Wesley

The MainForm Menu System

Chapter 7 – Slide 51

Copyright © 2011 Pearson Addison-Wesley

The ScubaForm Form

Chapter 7 – Slide 52

Copyright © 2011 Pearson Addison-Wesley

The SkyDiveForm Form

Chapter 7 – Slide 53

Copyright © 2011 Pearson Addison-Wesley

The PriceCalcModule Module

1 Module PriceCalcModule
2 ' Global constants
3 Public Const g_intMINIMUM_FOR_DISCOUNT As Integer = 5
4 Public Const g_decDISCOUNT_PERCENTAGE As Decimal = 0.1D
5
6 ' The DiscountAmount function accepts a package total
7 ' as an argument and returns the amount of discount
8 ' for that total.
9
10 Public Function DiscountAmount(ByVal decTotal As Decimal) As Decimal
11 Dim decDiscount As Decimal ' To hold the discount
12
13 ' Calculate the discount.
14 decDiscount = decTotal * g_decDISCOUNT_PERCENTAGE
15
16 ' Return the discount.
17 Return decDiscount
18 End Function
19 End Module

Chapter 7 – Slide 54

