

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Chapter 8

Arrays and More

Copyright © 2011 Pearson Addison-Wesley

Introduction

• Arrays are like groups of variables that allow you to store sets
of similar data

– A single dimension array is useful for storing and working
with a single set of data

– A multidimensional array can be used to store and work
with multiple sets of data

• Array programming techniques covered

– Summing and averaging all the elements in an array

– Summing all the columns in a two-dimensional array

– Searching an array for a specific value

– Using parallel arrays

Chapter 8 – Slide 3

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.1

ARRAYS

An array is like a group of variables with one name. You store and

work with values in an array by using a subscript.

Copyright © 2011 Pearson Addison-Wesley

Array Characteristics

• An array stores multiple values of same type
– Like a group of variables with a single name

• For example, the days of the week might be:
– a set of 7 string variables

– with a maximum length of 9 characters

• All variables within an array are called
elements and must be of the same data type

• You access the elements in an array through a
subscript

Chapter 8 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

Subscript Characteristics

• A subscript, also called an index, is a number that
identifies a specific element within an array

• Subscript numbering works like a list box index:

– Subscript numbering begins at 0

– 1st element in an array is always subscript 0

– Last element is total number of elements – 1

• An array with 7 elements refers to the 1st element
as subscript 0 and the last element as subscript 6

Chapter 8 – Slide 6

Copyright © 2011 Pearson Addison-Wesley

Declaring an Array

• Declare an array much like a regular variable

– ArrayName is the name of the array

– UpperSubscript is the value of the array's highest
subscript
• Must be a positive Integer

• Positive Integer named constant

• Or an Integer variable containing a positive number

– DataType is a Visual Basic data type

Chapter 8 – Slide 7

Dim ArrayName (UpperSubscript) As DataType

Copyright © 2011 Pearson Addison-Wesley

Array Declaration Example

• This statement declares intHours as an array of Integers

– (6) indicates that the array’s highest subscript is 6

– Consists of seven elements with subscripts 0 through 6

– Array elements are initialized to 0

Chapter 8 – Slide 8

Dim intHours(6) As Integer

Copyright © 2011 Pearson Addison-Wesley

Default Initialization

• All elements of an Integer array are initialized
to zero

– Same initialization as an integer variable

• Each array element is initialized exactly the
same as a simple variable of that data type

– Decimal elements are initialized to zero (0.0)

– String elements are initialized to the special value
Nothing

Chapter 8 – Slide 9

Copyright © 2011 Pearson Addison-Wesley

Implicit Array Sizing and Initialization

• An array can be initialized when declared

• Example:

• This array is implicitly sized
– Upper subscript value is left blank

– Number of elements implied from initialization

– Upper subscript of 5 implied by this example

– This results in a 6 element array

• Elements are assigned the values shown

Chapter 8 – Slide 10

Dim intNumbers() As Integer = { 2, 4, 6, 8, 10, 12 }

Copyright © 2011 Pearson Addison-Wesley

Using Named Constants as Subscripts in Array
Declarations

• A named constant may be used as an array's
highest subscript instead of a number

• This is a common use for named constants

– Highest subscript is often used multiple times

– If highest subscript changes, use of a named
constant allows it to be changed in one place

Chapter 8 – Slide 11

Const intMAX_SUBSCRIPT As Integer = 100
Dim intArray(intMAX_SUBSCRIPT) As Integer

Copyright © 2011 Pearson Addison-Wesley

Working with Array Elements

• You can store a value in an array element with an assignment
statement

Chapter 8 – Slide 12

intNumbers(0) = 100
intNumbers(1) = 200
intNumbers(2) = 300
intNumbers(3) = 400
intNumbers(4) = 500
intNumbers(5) = 600

Copyright © 2011 Pearson Addison-Wesley

Accessing Array Elements with a Loop

• Loops are frequently used to process arrays

– Using an Integer variable as a subscript

– For example, the following code stores an empty string in
each element of strNames, a 1000-element array of
strings:

Chapter 8 – Slide 13

Const intMAX_SUBSCRIPT As Integer = 999
Dim strNames(intMAX_SUBSCRIPT) As String
Dim intCount As Integer

For intCount = 0 To intMAX_SUBSCRIPT
strNames(intCount) = String.Empty

Next

Copyright © 2011 Pearson Addison-Wesley

Array Bounds Checking

• The Visual Basic runtime
system performs array
bounds checking

– It does not allow a
statement to use a
subscript outside the
range of valid subscripts
for an array
• An invalid subscript

causes VB to throw a run-
time exception

• Bounds checking is not
done at design time

Chapter 8 – Slide 14

Copyright © 2011 Pearson Addison-Wesley

Using an Array to Hold a List of Random
Numbers

• In Tutorial 8-1 you will create an application that randomly
generates lottery numbers

Chapter 8 – Slide 15

Const intMAX_SUBSCRIPT As Integer = 4
Dim intNumbers(intMAX_SUBSCRIPT) As Integer
Dim intCount As Integer

Dim rand As New Random

For intCount = 0 To intMAX_SUBSCRIPT
intNumbers(intCount) = rand.Next(100)

Next

Copyright © 2011 Pearson Addison-Wesley

Using Array Elements to Store Input

• Array elements can hold data entered by the user

• In Tutorial 8-2 you will create an application that

– Uses input boxes to read a sequence of strings as input

– Stores those strings in an array

Chapter 8 – Slide 16

Const intMAX_SUBSCRIPT As Integer = 9
Dim intSeries(intMAX_SUBSCRIPT) As Integer
Dim intCount As Integer

For intCount = 0 To intMAX_SUBSCRIPT
intSeries(intCount) = CInt(InputBox("Enter a number."))

Next

Copyright © 2011 Pearson Addison-Wesley

Getting the Length of an Array

• Arrays have a Length property

– Holds the number of elements in the array

• For example

– strNames.Length – 1 as the loop’s upper limit

– Length property is 1 greater than the upper subscript

Chapter 8 – Slide 17

Dim strNames() As String = { "Joe", "Geri", "Rose" }

For intCount = 0 to strNames.Length – 1
MessageBox.Show(strNames(intCount))

Next

Copyright © 2011 Pearson Addison-Wesley

Processing Array Contents

• Array elements can be used just like regular variables in
operations

– For example
• Multiplication

• Addition

• Format String

• In Tutorial 8-3 you will complete an application that performs
calculations using array elements

Chapter 8 – Slide 18

decGrossPay = intHours(3) * decPayRate

intTallies(0) += 1

MessageBox.Show(decPay(5).ToString("c"))

Copyright © 2011 Pearson Addison-Wesley

Accessing Array Elements with a For Each Loop

• The For Each loop can simplify
array processing

– Retrieves the value of each
element

– Cannot modify values

• Here is the general format:

– var is the name of a variable just
for use with the loop

– type is the data type of the array

– array is the name of an array

• For example, suppose we have
the following array declaration:

• The following For Each loop
displays all the values in a list box
named lstShow:

Chapter 8 – Slide 19

For Each var As type In array
statements

Next

Dim intArray() As Integer = {10, 20,
30, 40,
50, 60}

For Each intVal As Integer In intArray
lstShow.Items.Add(intVal)

Next

Copyright © 2011 Pearson Addison-Wesley

Optional Topic: Using the For Each Loop with a
ListBox

• A For Each loop can also be used to process
items in a collection
– For example, to search for a city name in the Items

collection of a ListBox control named lstCities

Chapter 8 – Slide 20

For Each strCity As String In lstCities.Items
If strCity = txtCity.Text Then

lblResult.Text = "The city was found!"
End If

Next

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.2

MORE ABOUT ARRAY PROCESSING

There are many uses for arrays, and many programming techniques

can be applied to them. You can total values and search for data.

Related information may be stored in multiple parallel arrays. In

addition, arrays can be resized at runtime.

Copyright © 2011 Pearson Addison-Wesley

How to Total the Values in a Numeric Array

• To total the values in a numeric array

– Use a For…Next loop with an accumulator variable

Chapter 8 – Slide 22

Const intMAX_SUBSCRIPT As Integer = 24
Dim intUnits(intMAX_SUBSCRIPT) As Integer

Dim intTotal As Integer = 0
Dim intCount As Integer

For intCount = 0 To (intUnits.Length – 1)
intTotal += intUnits(intCount)

Next

Copyright © 2011 Pearson Addison-Wesley

How to Total the Values in a Numeric Array

• You can also use a For Each loop with an
accumulator variable

Chapter 8 – Slide 23

Const intMAX_SUBSCRIPT As Integer = 24
Dim intUnits(intMAX_SUBSCRIPT) As Integer

Dim intTotal As Integer = 0

For Each intVal As Integer In intUnits
intTotal += intVal

Next

Copyright © 2011 Pearson Addison-Wesley

Calculating the Average Value in a Numeric Array

• Sum the values in the array

• Divide the sum by the number of elements

Chapter 8 – Slide 24

Const intMAX_SUBSCRIPT As Integer = 24
Dim intUnits(intMAX_SUBSCRIPT) As Integer

Dim intTotal As Integer = 0
Dim dblAverage As Double
Dim intCount As Integer

For intCount = 0 To (intUnits.Length – 1)
intTotal += intUnits(intCount)

Next

' Use floating-point division to compute the average.
dblAverage = intTotal / intUnits.Length

Copyright © 2011 Pearson Addison-Wesley

Find the Highest and Lowest Values in an Integer
Array

• Highest Value • Lowest Value

Chapter 8 – Slide 25

Dim intUnits() As Integer = {1, 2, 3, 4, 5}
Dim intCount As Integer
Dim intHighest As Integer

' Get the first element.
intHighest = intUnits(0)

' Search for the highest value.
For intCount = 1 To (intUnits.Length - 1)

If intUnits(intCount) > intHighest Then
intHighest = intNumbers(intCount)

End If
Next

Dim intUnits() As Integer = {1, 2, 3, 4, 5}
Dim intCount As Integer
Dim intLowest As Integer

' Get the first element.
intLowest = intUnits(0)

' Search for the lowest value.
For intCount = 1 To (intUnits.Length - 1)

If intUnits(intCount) < intLowest Then
intLowest = intNumbers(intCount)

End If
Next

Copyright © 2011 Pearson Addison-Wesley

Copying One Array’s Contents to Another

• A single assignment statement

– Does not copy array values into another array

– Causes both array names to reference the same array in memory

• A loop must be used to copy individual elements from one array to
another

Chapter 8 – Slide 26

For intCount = 0 To (intOldValues.Length-1)
intNewValues(intCount) = intOldValues(intCount)

Next

Copyright © 2011 Pearson Addison-Wesley

Parallel Arrays

• Related data in multiple arrays can be accessed using the same subscript

• Tutorial 8-4 examines an application that uses parallel arrays

Chapter 8 – Slide 27

Copyright © 2011 Pearson Addison-Wesley

Parallel Relationships between Arrays, List Boxes, and
Combo Boxes

Chapter 8 – Slide 28

' A list box with names
lstPeople.Items.Add("Jean James") ' Index 0
lstPeople.Items.Add("Kevin Smith") ' Index 1
lstPeople.Items.Add("Joe Harrison") ' Index 2

' An array with corresponding phone numbers
phoneNumbers(0) = "555-2987" ' Element 0
phoneNumbers(1) = "555-5656" ' Element 1
phoneNumbers(2) = "555-8897" ' Element 2

' Display the phone number for the selected person’s name.
If lstPeople.SelectedIndex > -1 And

lstPeople.SelectedIndex < phoneNumbers.Length Then
MessageBox.Show(phoneNumbers(lstPeople.SelectedIndex))

Else
MessageBox.Show("That is not a valid selection.")

End If

Copyright © 2011 Pearson Addison-Wesley

Searching Arrays

• The most basic method of
searching an array is the
sequential search

– Uses a loop to examine
elements in the array

– Compares each element
with the search value

– Stops when the value is
found or the end of the
array is reached

• The Pseudocode for a
sequential search is as
follows:

Chapter 8 – Slide 29

found = False
subscript = 0
Do While found is False and
subscript < array's length

If array(subscript) = searchValue Then
found = True
position = subscript

End If
subscript += 1

End While

Copyright © 2011 Pearson Addison-Wesley

Sorting an Array

• Programmers often want to sort,
or arrange the elements of an
array in ascending order

– Values are arranged from
lowest to highest

• Lowest value is stored in
the first element

• Highest value is stored in
the last element

• To sort an array in ascending
order

– Use the Array.Sort method

• Here is the general format:

• ArrayName is the name of the
array you want to sort

– For example:

• After the statement executes, the
array values are in the following
order

– 1, 3, 6, 7, 12

Chapter 8 – Slide 30

Array.Sort(ArrayName)

Dim intNumbers() As Integer = {7, 12,
1, 6, 3}

Array.Sort(intNumbers)

Copyright © 2011 Pearson Addison-Wesley

Sorting an Array

• When you pass an array of
strings to the Array.Sort
method the array is sorted in
ascending order

– According to the Unicode
encoding scheme

– Sort occurs in alphabetic
order

• Numeric digits first

• Uppercase letters
second

• Lowercase letters last

• For example:

• After the statement executes, the
values in the array appear in this
order:

– "Adam", "Bill", "Kim", "dan"

Chapter 8 – Slide 31

Dim strNames() As String = {"dan",
"Kim",
"Adam",
"Bill"}

Array.Sort(strNames)

Copyright © 2011 Pearson Addison-Wesley

Dynamically Sizing Arrays

• You can change the number of elements in an array at
runtime, using the ReDim statement

– Preserve is optional

• If used, the existing values of the array are preserved

• If not, the existing values are destroyed

– Arrayname is the name of the array being resized

– UpperSubscript is the new upper subscript

• Must be a positive whole number

• If smaller that it was, elements at the end are lost

Chapter 8 – Slide 32

ReDim [Preserve] Arrayname (UpperSubscript)

Copyright © 2011 Pearson Addison-Wesley

Dynamically Sizing Arrays Example

• You can initially declare an array with no size, as follows:

– Then prompt the user for the number of elements

– And resize the array based on user input

Chapter 8 – Slide 33

intNumScores = CInt(InputBox("Enter the number of test scores."))
If intNumScores > 0 Then

ReDim dblScores (intNumScores - 1)
Else

MessageBox.Show("You must enter 1 or greater.")
End If

Dim dblScores() As Double

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.3

PROCEDURES AND FUNCTIONS
THAT WORK WITH ARRAYS

You can pass arrays as arguments to procedures and functions. You

can return an array from a function. These capabilities allow you to

write procedures and functions that perform general operations

with arrays.

Copyright © 2011 Pearson Addison-Wesley

Passing Arrays as Arguments

• Procedures can be written to
process the data in arrays

– Store data in an array

– Display an array’s contents

– Sum or average the values
in an array

• Usually such procedures
accept an array as an
argument

– Pass the name of the array
as the argument to the
procedure or function

Chapter 8 – Slide 35

' The DisplaySum procedure displays the
' sum of the elements in the argument array.
Sub DisplaySum(ByVal intArray() As Integer)
Dim intTotal As Integer = 0 ' Accumulator
Dim intCount As Integer ' Loop counter

For intCount = 0 To (intArray.Length - 1)
intTotal += intArray(intCount)

Next

MessageBox.Show("The total is " &
intTotal.ToString())

End Sub

Dim intNumbers() As Integer = { 2, 4, 7, 9, 8,
12, 10 }

DisplaySum(intNumbers)

Copyright © 2011 Pearson Addison-Wesley

Passing Arrays by Value and by Reference

• Array arguments can be accessed and modified if passed ByVal or ByRef

– ByVal prevents an array from being assigned to another array

– ByRef allows an array to be assigned to another array

• After the ResetValues procedure executes

– If passed ByVal, intNumbers is unchanged and keeps the values { 1, 2, 3, 4, 5 }

– If passed ByRef, intNumbers will reference the newArray values { 0, 0, 0, 0, 0 }

Chapter 8 – Slide 36

Dim intNumbers() As Integer = { 1, 2, 3, 4, 5 }
ResetValues(intNumbers)

Sub ResetValues(ByVal intArray() As Integer)
Dim newArray() As Integer = {0, 0, 0, 0, 0}
intArray = newArray

End Sub

Copyright © 2011 Pearson Addison-Wesley

Returning an Array from a Function

Chapter 8 – Slide 37

' Get three names from the user and return them as an array of strings.
Function GetNames() As String()

Const intMAX_SUBSCRIPT As Integer = 2
Dim strNames(intMAX_SUBSCRIPT) As String
Dim intCount As Integer

For intCount = 0 To 3
strNames(intCount) = InputBox("Enter name " & (intCount + 1).ToString())

Next

Return strNames
End Function

Dim strCustomers() As String
strCustomers = GetNames()

An array returned from a function must be
assigned to an array of the same type

In Tutorial 8-5, you examine an application
containing several functions that work with
arrays

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.4

MULTIDIMENSIONAL ARRAYS

You may create arrays with more than two dimensions to hold complex
sets of data

Copyright © 2011 Pearson Addison-Wesley

Two-Dimensional Arrays

• An array with one subscript is called a one-dimensional array

– Useful for storing and working with a single set of data

• A two-dimensional array is like an array of arrays

– Used to hold multiple sets of values

– Think of it as having rows and columns of elements

Chapter 8 – Slide 39

Copyright © 2011 Pearson Addison-Wesley

Declaring a Two-Dimensional Array

• A two-dimensional array declaration requires two sets of upper subscripts

– First upper subscript is for the rows

– Second upper subscript for the columns

• ArrayName is the name of the array

• UpperRow is the value of the highest row subscript

– Must be a positive integer

• UpperColumn is the value of the highest column subscript

– Must be a positive integer

• DataType is the Visual Basic data type

• Example declaration with three rows and four columns:

Chapter 8 – Slide 40

Dim ArrayName (UpperRow,UpperColumn) As DataType

Dim dblScores (2, 3) As Double

Copyright © 2011 Pearson Addison-Wesley

Processing Data in Two-Dimensional Arrays

• Use named constants to specify the upper subscripts

Chapter 8 – Slide 41

Const intMAX_ROW As Integer = 2
Const intMAX_COL As Integer = 3
Dim dblScores(intMAX_ROW, intMAX_COL) As Double

Copyright © 2011 Pearson Addison-Wesley

Processing Data in Two-Dimensional Arrays

• The elements in row 0 are referenced as follows:

• The elements in row 1 are referenced as follows:

• The elements in row 2 are referenced as follows:

Chapter 8 – Slide 42

dblScores(0, 0) ' Element in row 0, column 0
dblScores(0, 1) ' Element in row 0, column 1
dblScores(0, 2) ' Element in row 0, column 2
dblScores(0, 3) ' Element in row 0, column 3

dblScores(1, 0) ' Element in row 1, column 0
dblScores(1, 1) ' Element in row 1, column 1
dblScores(1, 2) ' Element in row 1, column 2
dblScores(1, 3) ' Element in row 1, column 3

dblScores(2, 0) ' Element in row 2, column 0
dblScores(2, 1) ' Element in row 2, column 1
dblScores(2, 2) ' Element in row 2, column 2
dblScores(2, 3) ' Element in row 2, column 3

Copyright © 2011 Pearson Addison-Wesley

Processing Data in Two-Dimensional Arrays

• Example of storing a number in a single element

• Example of prompting the user for input, once for each element

• Example of displaying all of the elements in the array

Chapter 8 – Slide 43

dblScores(2, 1) = 95

For intRow = 0 To intMAX_ROW
For intCol = 0 To intMAX_COL

dblScores(intRow, intCol) = CDbl(InputBox("Enter a score."))
Next

Next

For intRow = 0 To intMAX_ROW
For intCol = 0 To intMAX_COL

lstOutput.Items.Add(dblScores(intRow, intCol).ToString())
Next

Next

Copyright © 2011 Pearson Addison-Wesley

Implicit Sizing and Initialization of Two-
Dimensional Arrays

• When providing an
initialization list for a two-
dimensional array, keep in
mind that:

– You cannot provide the
upper subscript numbers

– You must provide a
comma to indicate the
number of dimensions

– Values for each row are
enclosed in their own set
of braces

Chapter 8 – Slide 44

Dim intNumbers(,) As Integer = { {1, 2, 3} ,
{4, 5, 6} ,
{7, 8, 9} }

intNumbers(0, 0) is set to 1
intNumbers(0, 1) is set to 2
intNumbers(0, 2) is set to 3

intNumbers(1, 0) is set to 4
intNumbers(1, 1) is set to 5
intNumbers(1, 2) is set to 6

intNumbers(2, 0) is set to 7
intNumbers(2, 1) is set to 8
intNumbers(2, 2) is set to 9

This statement declares an array with
three rows and three columns:

Copyright © 2011 Pearson Addison-Wesley

Summing the Columns of a Two-Dimensional
Array

• The outer loop controls the column subscript

• The inner loop controls the row subscript

• Tutorial 8-6 uses a two-dimensional array in the Seating Chart application

Chapter 8 – Slide 45

' Sum the columns.
For intCol = 0 To intMAX_COL

' Initialize the accumulator.
intTotal = 0
' Sum all rows within this column.
For intRow = 0 To intMAX_ROW

intTotal += intValues(intRow, intCol)
Next
' Display the sum of the column.
MessageBox.Show("Sum of column " & intCol.ToString() &

" is " & intTotal.ToString())
Next

Copyright © 2011 Pearson Addison-Wesley

Three-Dimensional Arrays and Beyond

• You can create arrays with up to 32 dimensions

• The following is an example of a three-dimensional array:

Chapter 8 – Slide 46

Dim intPages(2, 2, 3) As Decimal

Copyright © 2011 Pearson Addison-Wesley

Three-Dimensional Arrays and Beyond

• Arrays with more than three dimension are difficult to visualize

– Useful in some programming applications

– For example:

• A factory warehouse where cases of widgets are stacked on
pallets, an array of four dimensions can store a part number for
each widget

• The four subscripts of each element can store:

– Pallet number

– Case number

– Row number

– Column number

• A five dimensional array could be used for multiple warehouses

Chapter 8 – Slide 47

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.5

FOCUS ON GUI DESIGN: THE ENABLED
PROPERTY AND THE TIMER CONTROL

You can disable controls by setting their Enabled property to False. The
Timer control allows your application to execute a procedure at regular
time intervals

Copyright © 2011 Pearson Addison-Wesley

The Enabled Property

• Most controls have an Enabled property

• If this Boolean property is set to False the
control is disabled meaning the control:
– Cannot receive the focus

– Cannot respond to user generated events

– Will appear dimmed, or grayed out

• Default value for this property is True

• May be set in code when needed as shown:

Chapter 8 – Slide 49

radBlue.Enabled = False

Copyright © 2011 Pearson Addison-Wesley

The Timer Control

• The Timer control allows an application to automatically
execute code at regular intervals

• To place a Timer control on a form:
– Double-click the Timer icon in Components section of the

Toolbox
– Appears in the component tray at design time
– Prefix a Timer control’s name with tmr

• To create a Tick event handler code template:
– Double-click a Timer control that has been added to the

Component tray
– Code will be executed at regular intervals

Chapter 8 – Slide 50

Copyright © 2011 Pearson Addison-Wesley

Timer Control Properties

• Timer control has two important properties:
– The Enabled property

• Must be set to True to respond to Tick events
– The Interval property

• The number of milliseconds that elapse
between events

• Tutorial 8-7 demonstrates the Timer control
• In Tutorial 8-8 you will use the Timer control to

create a game application

Chapter 8 – Slide 51

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.6

FOCUS ON GUI DESIGN: ANCHORING
AND DOCKING CONTROLS

Controls have two properties, Anchor and Dock, which allow you to
control the control’s position on the form when the form is resized at
runtime.

Copyright © 2011 Pearson Addison-Wesley

The Anchor Property

• The Anchor property allows you to anchor the control to one
or more edges of a form
– Controls are anchored to the top and left edges of the form by default

Chapter 8 – Slide 53

Copyright © 2011 Pearson Addison-Wesley

The Dock Property

• The Dock property docks a control against a form’s edge

– Buttons are automatically sized to fill up in edge which
they are docked

Chapter 8 – Slide 54

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 8.7

FOCUS ON PROBLEM SOLVING: BUILDING
THE DEMETRIS LEADERSHIP CENTER

APPLICATION

In this section you build an application that uses data stored in parallel
arrays.

Copyright © 2011 Pearson Addison-Wesley

The Application’s Form

Chapter 8 – Slide 56

Copyright © 2011 Pearson Addison-Wesley

The Menu System

Chapter 8 – Slide 57

Copyright © 2011 Pearson Addison-Wesley

Class-Level Declarations

Chapter 8 – Slide 58

Copyright © 2011 Pearson Addison-Wesley

Methods

Chapter 8 – Slide 59

Copyright © 2011 Pearson Addison-Wesley

Sales Report Displayed

Chapter 8 – Slide 60

