

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Chapter 9

Files, Printing, and Structures

Copyright © 2011 Pearson Addison-Wesley

Introduction

• In this chapter you will learn how to:
– Save data to sequential text files

– Read data from the files back into the application

– Use the OpenFileDialog, SaveFileDialog,
ColorDialog, and FontDialog controls
• For opening and saving files and for selecting colors and

fonts with standard Windows dialog boxes

– Use the PrintDocument control
• To print reports from your application

– Package units of data together into structures

Chapter 9 – Slide 3

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 9.1

USING FILES

A file is a collection of data stored on a computer disk.

Data can be saved in a file and later reused.

Copyright © 2011 Pearson Addison-Wesley

Data Can be Stored in a File

• Thus far, all of our data has been stored in
controls and variables existing in RAM

• This data disappears once the program stops
running

• If data is stored in a file on a computer disk, it
can be retrieved and used at a later time

Chapter 9 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

The Process of Using a File

• The following steps must be taken when a file
is used by an application:

1. The file must be opened; If it does not yet exist,
it must be created

2. Data is written to the file or read from the file

3. When the application is finished using the file,
the file is closed

Chapter 9 – Slide 6

Copyright © 2011 Pearson Addison-Wesley

Output File

• An output file is a file into which a program writes
data

Chapter 9 – Slide 7

Copyright © 2011 Pearson Addison-Wesley

Input File

• An input file is a file from which a program reads
data

Chapter 9 – Slide 8

Copyright © 2011 Pearson Addison-Wesley

File Types

• There are two types of files:

– Text

– Binary

• A text file contains plain text and may be
opened in a text editor such as Windows
Notepad

• Binary files contain pure binary data and
cannot usually be viewed with a text editor

Chapter 9 – Slide 9

Copyright © 2011 Pearson Addison-Wesley

File Access Methods

• There are two methods of accessing Files:

– Sequential-access

– Random-access

• A sequential-access file is like a stream of data
that must be read from beginning to end

• A random-access file may be accessed in any
order

Chapter 9 – Slide 10

Copyright © 2011 Pearson Addison-Wesley

Writing to Files with StreamWriter Objects

• Two basic ways to open a file for writing

– Create a new file

– Open an existing file and append data to it

• A StreamWriter object performs the actual
writing to the file

• Two required steps:

– Declare a StreamWriter variable

– Call either File.CreateText or File.AppendText and
assign its return value to the StreamWriter variable

Chapter 9 – Slide 11

Copyright © 2011 Pearson Addison-Wesley

Using the Imports Statement for the
StreamWriter Classes

• To make the StreamWriter classes available to
your program

– Insert the following Imports statement at the top
of your form’s code file:

Chapter 9 – Slide 12

Imports System.IO

Copyright © 2011 Pearson Addison-Wesley

Creating a Text File

• Declare a StreamWriter variable using the
following general format:

– ObjectVar is the name of the object variable

– You may use Private or Public in place of Dim

• At the class-level or module-level

– Here’s an example:

Chapter 9 – Slide 13

Dim ObjectVar As StreamWriter

Dim phoneFile As StreamWriter

Copyright © 2011 Pearson Addison-Wesley

Creating a Text File

• Next, call the File.CreateText method, passing
the name of a file

• For example:

– Notice the return value from File.CreateText is
assigned to the StreamWriter variable named
phoneFile

Chapter 9 – Slide 14

phoneFile = File.CreateText("phonelist.txt")

Copyright © 2011 Pearson Addison-Wesley

File Paths

• The filename that you pass to the File.CreateText
method
– Can be a complete file path with drive letter

"C:\data\vbfiles\phonelist.txt"
– Refer to a file in the default drive root directory

"\phonelist.txt"
– Include no path information at all

"phonelist.txt"
• If no path information specified

– The \bin\Debug folder of the current project is used

Chapter 9 – Slide 15

Copyright © 2011 Pearson Addison-Wesley

Opening an Existing File and Appending
Data to It

• If a text file already exists, you may want to add more
data to the end of the file

– This is called appending the file

• First, declare a StreamWriter variable

• Then call the File.AppendText method, passing the
name of an existing file

– If the file does not exit it will be created

• For example:

Chapter 9 – Slide 16

phoneFile = File.AppendText("phonelist.txt")

Copyright © 2011 Pearson Addison-Wesley

Writing Data to a File

• The WriteLine method of the StreamWriter class writes a line of
data to a file using the following general format:

– ObjectVar is the name of the StreamWriter object variable

– Data represents constants or variables whose contents will be
written to the file

• Calling the method without the Data argument writes a
blank line to the file

• The WriteLine method writes the data to the file and then writes a
newline character immediately after the data

– A newline character is an invisible character that separates text
by breaking it into another line when displayed on the screen

Chapter 9 – Slide 17

ObjectVar.WriteLine(Data)

Copyright © 2011 Pearson Addison-Wesley

Writing Data to a File

• The following writes three students’ first names and scores to a file:

• In addition to separating the contents of a file into lines, the
newline character also serves as a delimiter

– A delimiter is an item that separates other items

– Data must be separated in order for it to be read from a file

Chapter 9 – Slide 18

Jim<newline>95<newline>Karen<newline>98<newline>Bob<newline>82<newline>

' Write data to the file.
studentFile.WriteLine("Jim")
studentFile.WriteLine(95)
studentFile.WriteLine("Karen")
studentFile.WriteLine(98)
studentFile.WriteLine("Bob")
studentFile.WriteLine(82)

Copyright © 2011 Pearson Addison-Wesley

The Write Method

• The Write method is a member of the StreamWriter class
that writes an item of data without writing a newline
character using the following general format:

– ObjectVar is the name of a StreamWriter object

– Data represents the contents of a constant or variable that
is written to the file

– Writes data to a file without terminating the line with a
newline character

• A blank space or comma could be used to provide a
delimiter between data items

Chapter 9 – Slide 19

ObjectVar.Write(Data)

Copyright © 2011 Pearson Addison-Wesley

Closing a File

• The StreamWriter class has a method named Close that
closes a file using the following general format:

– ObjectVar is the StreamWriter object variable you want to close

• The following statement closes a StreamWriter object
variable named salesFile:

• The Close method
– Writes any unsaved information remaining in the file buffer

– Releases memory allocated by the StreamWriter object

• Tutorial 9-1 examines an application that writes data to a file

Chapter 9 – Slide 20

ObjectVar.Close()

salesFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Appending a File

• When we append a file

–We write new data immediately following
existing data in the file

• If an existing file is opened with the
AppendText method

–Data written to the file is appended to the
file’s existing data

– If the file does not exit, it is created

Chapter 9 – Slide 21

Copyright © 2011 Pearson Addison-Wesley

Appending a File Example

• The following example:
Opens a file in append mode and writes additional data to the file

Chapter 9 – Slide 22

Jim Weaver
555-1212
Mary Duncan
555-2323
Karen Warren
555-3434

' Declare an object variable
Dim friendFile As StreamWriter

' Open the file.
friendFile = File.AppendText("MyFriends.txt")

' Write the data.
friendFile.WriteLine("Bill Johnson")
friendFile.WriteLine("555–4545")

' Close the file.
friendFile.Close()

Jim Weaver
555-1212
Mary Duncan
555-2323
Karen Warren
555-3434
Bill Johnson
555-4545

Before After

Copyright © 2011 Pearson Addison-Wesley

Reading Files with StreamReader Objects

• A StreamReader object reads data from a sequential text file

– A StreamReader object is an instance of the
StreamReader class

• The StreamReader class provides methods for reading data
from a file

• Create a StreamReader object variable using the following
general format:

– ObjectVar is the name of the object variable

• You may use Private or Public in place of Dim

– At the class-level or module-level

Chapter 9 – Slide 23

Dim ObjectVar As StreamReader

Copyright © 2011 Pearson Addison-Wesley

Reading Files with StreamReader Objects

• The File.OpenText method opens a file and stores the address
of the StreamReader object variable using the following
general format:

– Filename is a string or a string variable specifying the path
and/or name of the file to open

• For example:

• To make the StreamReader classes available
– Write the following Imports statement at the top of your code file:

Chapter 9 – Slide 24

File.OpenText(Filename)

Dim customerFile As StreamReader
customerFile = File.OpenText("customers.txt")

Imports System.IO

Copyright © 2011 Pearson Addison-Wesley

Reading Data from a File

• The ReadLine method in the StreamReader class
reads a line of data from a file using the following
general format:

– ObjectVar is the name of a StreamReader object variable

– The method reads a line from the file associated with
ObjectVar and returns the data as a string

• For example, the following statement reads a line from
the file and stores it in the variable:

Chapter 9 – Slide 25

ObjectVar.ReadLine()

strCustomerName = customerFile.ReadLine()

Copyright © 2011 Pearson Addison-Wesley

Reading Data from a File

• Data is read from a file
in a forward-only
direction

• When the file is opened

– Its read position is set to
the first item in the file

• As data is read

– The read position
advances through the
file

Chapter 9 – Slide 26

Dim textFile As StreamReader
textFile = File.OpenText("Quotation.txt")

strInput = textFile.ReadLine()

Copyright © 2011 Pearson Addison-Wesley

Closing the File

• The StreamReader class has a method named Close that
closes an open StreamReader object using the following
general format:

– ObjectVar is the StreamReader object variable you want to
close

• The following statement closes a StreamReader object
variable named readFile:

• In Tutorial 9-2, you complete an application that uses the ReadLine
statement

Chapter 9 – Slide 27

ObjectVar.Close()

readFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Determining Whether a File Exists

• To determine if a file exists before opening it, you can call the
File.Exists method using the following general format:

– Filename is the name of a file, which may include the path

– The method returns True if the files exists or False if the
file does not exist

Chapter 9 – Slide 28

File.Exists(Filename)

If File.Exists(strFilename) Then
' Open the file.
inputFile = File.OpenText(strFilename)

Else
MessageBox.Show(strFilename & " does not exist.")

End If

Copyright © 2011 Pearson Addison-Wesley

Using vbTab to Align Display Items

• The predefined vbTab constant
– Moves the print position forward to the next even multiple of 8

– Can be used to align columns in displayed or printed output

Chapter 9 – Slide 29

ListBox1.Items.Add("012345678901234567890")
ListBox1.Items.Add("X" & vbTab & "X")
ListBox1.Items.Add("XXXXXXXXXXXX" & vbTab & "X")
ListBox1.Items.Add(vbTab & vbTab & "X")

Copyright © 2011 Pearson Addison-Wesley

Detecting the End of a File

• In many cases, the amount of
data in a file is unknown

• Use the Peek method to
determine when the end of the
file has been reached

• Here is the general format:

– ObjectVar is the name of a
StreamReader object variable

– The method looks ahead in
the file without moving the
read position

– Returns the next character
that will be read or -1 if no
more characters can be read

• The following example uses a Do
Until loop and the Peek method
to determine the end of the file:

• Tutorial 9-3 examines an
application that detects the end
of a file

Chapter 9 – Slide 30

ObjectVar.Peek

Dim scoresFile As StreamReader
Dim strInput As String
scoresFile = File.OpenText("Scores.txt")
Do Until scoresFile.Peek = -1

strInput = scoresFile.ReadLine()
lstResults.Items.Add(strInput)

Loop
scoresFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Other StreamReader Methods

• The Read method reads only the next character from a file
and returns the integer code for the character using the
following general format:

– ObjectVar is the name of a StreamReader object

– Use the Chr function to convert the integer code to a character

Chapter 9 – Slide 31

ObjectVar.Read

Dim textFile As StreamReader
Dim strInput As String = String.Empty
textFile = File.OpenText("names.txt")
Do While textFile.Peek <> –1

strInput &= Chr(textFile.Read)
Loop
textFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Other StreamReader Methods

• The ReadToEnd method reads and returns the entire contents
of a file beginning at the current read position using the
following general format:

– ObjectVar is the name of a StreamReader object

Chapter 9 – Slide 32

ObjectVar.ReadToEnd

Dim textFile As StreamReader
Dim strInput As String
textFile = File.OpenText("names.txt")
strInput = textFile.ReadToEnd()
textFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Working with Arrays and Files

• The contents of an array can easily be written to a file using a
loop

Chapter 9 – Slide 33

Dim outputFile as StreamWriter
outputFile = File.CreateText("Values.txt")

For intCount = 0 To (intValues.Length – 1)
outputFile.WriteLine(intValues(intCount))

Next

outputFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Working with Arrays and Files

• And it is just as easy to read the contents of a file into an array
using a loop

Chapter 9 – Slide 34

Dim inputFile as StreamReader
inputFile = File.OpenText("Values.txt")

For intCount = 0 To (intValues.Length – 1)
intValues(intCount) = CInt(inputFile.ReadLine())

Next

inputFile.Close()

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 9.2

THE OPENFILEDIALOG, SAVEFILEDIALOG,
FONTDIALOG, AND COLORDIALOG CONTROLS

Visual Basic provides dialog controls that equip your applications

with standard Windows dialog boxes for operations such as opening

files, saving files, and selecting fonts and colors.

Copyright © 2011 Pearson Addison-Wesley

The OpenFileDialog and SaveFileDialog Controls

• Windows has a standard method of allowing a user to choose
a file to open or save

• These methods let users browse for a file

– The OpenFileDialog control and SaveFileDialog control
provide this capability in Visual Basic

• To use the OpenFileDialog control

– Double click on the OpenFileDialog tool in the Toolbox
under the Dialogs tab

– Appears in component tray

– Use ofd as standard prefix when naming

• SaveFileDialog is used in a similar way

Chapter 9 – Slide 36

Copyright © 2011 Pearson Addison-Wesley

Displaying an Open Dialog Box

• Display control with the ShowDialog method

• Method returns a value indicating which dialog box button the user
selects:

– Windows.Forms.DialogResult.OK for the OK button

– Windows.Forms.DialogResult.Cancel for the Cancel button

• For example:

Chapter 9 – Slide 37

ControlName.ShowDialog()

If ofdOpenFile.ShowDialog() = Windows.Forms.DialogResult.OK Then
MessageBox.Show(ofdOpenFile.FileName)

Else
MessageBox.Show("You selected no file.")

End If

Copyright © 2011 Pearson Addison-Wesley

The Filter Property

• FileDialog controls have a Filter property

– Limits files shown to specific file extensions

– Specify filter description shown to user first

– Then specify the filter itself

– Pipe symbol (|) used as a delimiter

• Following Filter property lets user choose:

– Text files (*.txt), displays all .txt files

– All files (*.*), displays all file extensions

Chapter 9 – Slide 38

Copyright © 2011 Pearson Addison-Wesley

Other OpenFileDialog Properties

• The InitialDirectory property is the initially displayed folder

• The Title property specifies the text on the title bar
– The following example sets the Filter, InitialDirectory and Title

properties:

Chapter 9 – Slide 39

' Configure the Open dialog box and display it.
With ofdOpenFile

.Filter = "Text files (*.txt)|*.txt|All files (*.*)|*.*"

.InitialDirectory = "C:\Data"

.Title = "Select a File to Open"
If.ShowDialog() = Windows.Forms.DialogResult.OK Then

inputFile = File.OpenText(.Filename)
End If

End With

Copyright © 2011 Pearson Addison-Wesley

Open Dialog Box Example

Chapter 9 – Slide 40

Copyright © 2011 Pearson Addison-Wesley

The SaveFileDialog Control

• The SaveFileDialog uses the same methods:
– ShowDialog

• The same properties:
– Filter
– InitialDirectory
– Title

• And the same result constants:
– Windows.Forms.DialogResult.OK
– Windows.Forms.DialogResult.Cancel

• Tutorial 9-4 uses these controls in a text editor

Chapter 9 – Slide 41

Copyright © 2011 Pearson Addison-Wesley

Windows Save As Dialog Box Example

Chapter 9 – Slide 42

Copyright © 2011 Pearson Addison-Wesley

The ColorDialog Control

• The ColorDialog control displays a standard Windows Color
Dialog box

– To place a ColorDialog control on a form

• Double-click the ColorDialog icon in the Dialogs section
of the Toolbox

• Control appears in the component tray

• Use the prefix cd when naming the control

– To display a Color dialog box, call the ShowDialog method

• Returns one of the following values

– Windows.Forms.DialogResult.OK

– Windows.Forms.DiallogResult.Cancel

Chapter 9 – Slide 43

Copyright © 2011 Pearson Addison-Wesley

Windows Color Dialog Box Example

Chapter 9 – Slide 44

Copyright © 2011 Pearson Addison-Wesley

The FontDialog Control

• The FontDialog control displays a standard Windows Font
Dialog box

– To place a FontDialog control on a form

• Double-click the FontDialog icon in the Dialogs section
of the Toolbox

• Control appears in the component tray

• Use the prefix fd when naming the control

– To display a Color dialog box, call the ShowDialog method

• Returns one of the following values

– Windows.Forms.DialogResult.OK

– Windows.Forms.DiallogResult.Cancel

Chapter 9 – Slide 45

Copyright © 2011 Pearson Addison-Wesley

Windows Font Dialog Box Example

Chapter 9 – Slide 46

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 9.3

THE PRINTDOCUMENT CONTROL

The PrintDocument control allows you to send output to the printer.

Copyright © 2011 Pearson Addison-Wesley

The PrintDocument Control

• The PrintDocument control gives your
application the ability to print output on the
printer

– To place a PrintDocument control on a form

• Double-click the PrintDocument tool in the Printing
section of the Toolbox

• Appears in the component tray

• Use the prefix pd when naming the control

Chapter 9 – Slide 48

Copyright © 2011 Pearson Addison-Wesley

The Print Method and the PrintPage Event

• The PrintDocument control has a Print method that starts the
printing process using the following general format:

– When the method is called, it triggers a PrintPage event

– You must write code in the event handler to initiate printing

• To create a PrintPage event handler code template:
– Double-click the PrintDocument control in the component tray

– The event handler code template appears in the Code window:

Chapter 9 – Slide 49

PrintDocumentControl.Print()

Private Sub pdPrint_PrintPage(...) Handles pdPrint.PrintPage

End Sub

Copyright © 2011 Pearson Addison-Wesley

The Print Method and the PrintPage Event

• Inside the PrintPage event hander

– You write code that sends text to the printer

• Using a specified

– Font

– Color

– Location

–With the e.Graphics.DrawString method

Chapter 9 – Slide 50

Copyright © 2011 Pearson Addison-Wesley

The Print Method and the PrintPage Event

• The e.Graphics.DrawString method uses the following general format:

– String is the string to be printed

– FontName is a string holding the name of the font to use

– Size is the size of the font in points

– Style is the font style (bold, italic, regular, strikeout, or underline)

– Brushes.Black specifies that the output should be printed in black

– Hpos is the horizontal position of the output, in points, from the left margin

– Vpos is the vertical position of the output, in points, from the top margin

• In Tutorial 9-5, you will modify the Simple Text Editor application from
Tutorial 9-4 by adding a Print command to the File menu

Chapter 9 – Slide 51

e.Graphics.DrawString(String, New Font(FontName, Size, Style),
Brushes.Black, HPos, VPos)

Copyright © 2011 Pearson Addison-Wesley

PrintPage Event Handler Example

Chapter 9 – Slide 52

Dim inputFile As StreamReader ' Object variable
Dim intX As Integer = 10 ' X coordinate for printing
Dim intY As Integer = 10 ' Y coordinate for printing

' Open the file.
inputFile = File.OpenText(strFilename)

' Read all the lines in the file.
Do While inputFile.Peek <> -1

' Print a line from the file.
e.Graphics.DrawString(inputFile.ReadLine(),

New Font ("Courier", 10, FontStyle.Regular),
Brushes.Black, intX, intY)

' Add 12 to intY
intY += 12

Loop

' Close the file.
inputFile.Close()

Copyright © 2011 Pearson Addison-Wesley

Formatted Reports with String.Format

• Reports typically contain the following sections:

– A report header

• Printed first, contains general information such as

– The name of the report

– The date and time the report was printed

– The report body

• Contains the report’s data

– Often formatted in columns

– An optional report footer

• Contains the sum of one for more columns of data

Chapter 9 – Slide 53

Copyright © 2011 Pearson Addison-Wesley

Printing Reports with Columnar Data

• Report data is typically printed in column
format

• With each column having an appropriate
header

• You can use Monospaced fonts to ensure that
– Each character takes same amount of space

– Columns will be aligned

• String.Format method is used to align data
along column boundaries

Chapter 9 – Slide 54

Copyright © 2011 Pearson Addison-Wesley

Using String.Format to Align Data along Column
Boundries

• The String.Format method can be used to align data along column
boundaries using the following general format:

– FormatString is a string containing the formatting specifications

– Arg0 and Arg1 are values to be formatted

– The [,…] notation indicates that more arguments may follow

– The method returns a string that contains the data

– Provided by the arguments (Arg0, Arg1, etc)

– Formatted with the specifications found in FormatString

Chapter 9 – Slide 55

String.Format(FormatString, Arg0, Arg1 [,...])

Copyright © 2011 Pearson Addison-Wesley

The Format String

• Contains three sets of numbers inside curly braces
– The first number in a set specifies the argument index number

• 0 represents the index for intX
• 1 represents the index for intY
• 2 represents the index for intZ

– The second number in a set is an absolute value that specifies
the column width, in spaces, and the type of justification that
will be used
• A positive number specifies right justification
• A negative number specifies left justification

Chapter 9 – Slide 56

Copyright © 2011 Pearson Addison-Wesley

Example Report Header and Column Headings

Chapter 9 – Slide 57

Dim intCount As Integer ' Loop counter
Dim decTotal As Decimal = 0 ' Accumulator
Dim intVertPosition As Integer ' Vertical printing position

' Print the report header.
e.Graphics.DrawString("Sales Report",

New Font("Courier New", 12,FontStyle.Bold),
Brushes.Black, 150, 10)

e.Graphics.DrawString("Date and Time: " & Now.ToString(),
New Font("Courier New", 12, FontStyle.Bold),
Brushes.Black, 10, 38)

' Print the column headings.
e.Graphics.DrawString(String.Format("{0, 20} {1, 20} ","NAME", "SALES"),

New Font("Courier New", 12, FontStyle.Bold),
Brushes.Black, 10, 66)

Copyright © 2011 Pearson Addison-Wesley

Example Report Body and Footer

Chapter 9 – Slide 58

' Print the body of the report.
intVertPosition = 82

For intCount = 0 To 4
e.Graphics.DrawString(String.Format("{0, 20} {1, 20}

",strNames(intCount),decSales(intCount).ToString("c")),
New Font("Courier New", 12, FontStyle.Regular),
Brushes.Black, 10, intVertPosition)

decTotal += decSales(intCount)
intVertPosition += 14

Next

' Print the report footer.
e.Graphics.DrawString("Total Sales: " & decTotal.ToString("c"),

New Font("Courier New", 12, FontStyle.Bold),
Brushes.Black, 150, 165)

Copyright © 2011 Pearson Addison-Wesley

Example Report Output

Chapter 9 – Slide 59

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 9.4

STRUCTURES

Visual Basic allows you to create your own data types, into which

you may group multiple data fields.

Copyright © 2011 Pearson Addison-Wesley

Arrays vs. Structures

• Arrays:
– Multiple fields in one array

– All of the same data type

– Distinguished by a numerical index

• Structures
– Multiple fields in one structure

– Can be of differing data types

– Distinguished by a field name

Chapter 9 – Slide 61

Copyright © 2011 Pearson Addison-Wesley

Creating a Structure

• A structure is a data type you can create that contains one or more variables
known as fields

• You create a structure at the class or module-level with the structure statement:

– For example:

Chapter 9 – Slide 62

[AccessSpecifier] Structure StructureName
FieldDeclarations

End Structure

Structure EmpPayData
Dim intEmpNumber As Integer
Dim strFirstName As String
Dim strLastName As String
Dim dblHours As Double
Dim decPayRate As Decimal
Dim decGrossPay As Decimal

End Structure

Copyright © 2011 Pearson Addison-Wesley

Declaring a Structure

Chapter 9 – Slide 63

deptHead.intEmpNumber = 1101
deptHead.strFirstName = "Joanne"
deptHead.strLastName = "Smith"
deptHead.dblHours = 40.0
deptHead.decPayRate = 25
deptHead.decGrossPay = CDec(deptHead.dblHours) * deptHead.decPayRate

Access each field with the dot operator

Dim deptHead As EmpPayData

Copyright © 2011 Pearson Addison-Wesley

Passing Structure Variables to Procedures and
Functions

• Structures can be passed to procedures and functions like any
other variable

• The data type to use in the specification is the name of the
structure

Chapter 9 – Slide 64

Sub CalcPay(ByRef employee As EmpPayData)
' This procedure accepts an EmpPayData variable
' as its argument. The employee's gross pay
' is calculated and stored in the grossPay
' field.
With employee

.decGrossPay =.dblHours * .decPayRate
End With

End Sub

Copyright © 2011 Pearson Addison-Wesley

Arrays as Structure Members

• Structures can contain arrays

• Must ReDim after declaring structure variable

Chapter 9 – Slide 65

Dim student As StudentRecord
ReDim student.dblTestScores(4)
student.strName = "Mary McBride"
student.dblTestScores(0) = 89.0
student.dblTestScores(1) = 92.0
student.dblTestScores(2) = 84.0
student.dblTestScores(3) = 96.0
student.dblTestScores(4) = 91.0

Structure StudentRecord
Dim strName As String
Dim dblTestScores() As Double

End Structure

Copyright © 2011 Pearson Addison-Wesley

Arrays of Structures

• Can declare an array of structures

• Example below declares employees as an array of type EmpPayData with
10 elements

– To access individual elements in the array, use a subscript

– Us the ReDim statement to set the size of each array field

• Tutorial 9-6 examines an application that uses a structure

Chapter 9 – Slide 66

Const intMAX_SUBSCRIPT As Integer = 9
Dim employees(intMAX_SUBSCRIPT) As EmpPayData

employees(0).intEmpNumber = 1101

For intIndex = 0 To intMax_SUBSCRIPT
ReDim students(intIndex).dblTestScores(4)

Next

