

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Chapter 12

Classes, Collections,

and Inheritance

Copyright © 2011 Pearson Addison-Wesley

Introduction

• This chapter introduces:
– Abstract Data Types

• How to create them with classes
– The process of analyzing a problem

• Determining its classes
– Techniques

• For creating objects, properties, and methods
– The Object Browser

• Provides information about classes in your project
– Collections

• Structures for holding groups of objects
– Inheritance

• A way for new classes to be created from existing ones

Chapter 12 – Slide 3

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 12.1

CLASSES AND OBJECTS

Classes are program structures that define abstract data types and

are used to create objects.

Copyright © 2011 Pearson Addison-Wesley

Object-Oriented Programming

• Object-oriented programming (OOP) is a way of designing
and coding applications with interchangeable software
components that can be used to build larger programs

– First languages appeared in the 1980’s

• SmallTalk, C++, and ALGOL

• The legacy of these languages has been the gradual
development of object-like visual tools for building
programs

– In Visual Basic, forms, buttons, check boxes, list boxes and
other controls are all examples of objects

– These designs help produce programs that are well suited
for ongoing development and expansion

Chapter 12 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

Abstract Data Types

• An abstract data type (ADT) is a data type
created by a programmer

• ADTs are important in computer science and
object-oriented programming

• An abstraction is a model of something that
includes only its general characteristics

• Dog is a good example of an abstraction
– Defines a general type of animal but not a specific

breed, color, or size
– A dog is like a data type
– A specific dog is an instance of the data type

Chapter 12 – Slide 6

Copyright © 2011 Pearson Addison-Wesley

Classes

• A class is a program structure that defines an abstract data
type
– Create the class first
– Then create an instance of the class

• also called an object
– Class instances share common characteristics
– Visual Basic forms and controls are classes

Chapter 12 – Slide 7

Copyright © 2011 Pearson Addison-Wesley

Class Properties, Methods, and Event Procedures

• Programs communicate with an object using the
properties and methods of the class

• Class properties:
– Buttons have Location, Text, and Name properties

• Class methods:
– The Focus method functions identically for every

single button

• Class event procedures:
– Each button on a form has a different click event

procedure

Chapter 12 – Slide 8

Copyright © 2011 Pearson Addison-Wesley

Object-Oriented Design

• The challenge is to design classes that effectively
cooperate and communicate

• Analyze application requirements to determine
ADTs that best implement the specifications

• Classes are fundamental building blocks

– Typically represent nouns of some type

• A well-designed class may outlive the application

– Other uses for the class may be found

Chapter 12 – Slide 9

Copyright © 2011 Pearson Addison-Wesley

Finding the Classes

• Object-oriented analysis starts with a detailed specification of the
problem to be solved

• A term often applied to this process is finding the classes

– For example, specifications for a program that involves
scheduling college classes for students:

– Notice the italicized nouns and noun phrases:

• List of students, transcript, student, and course

– These would ordinarily become classes in the program’s design

Chapter 12 – Slide 10

We need to keep a list of students that lets us track the courses they
have completed. Each student has a transcript that contains all
information about his or her completed courses. At the end of each
semester, we will calculate the grade point average of each student.
At times, users will search for a particular course taken by a student.

Copyright © 2011 Pearson Addison-Wesley

Looking for Control Structures

• Classes can also be discovered in

– The description of processing done by the application

– The description of control structures

• For example, a description of the scheduling process:

• A controlling agent could be implemented with a class

• For example, a class called Scheduler

• Can be used to match each student’s schedule with the college’s
master schedule

Chapter 12 – Slide 11

We also want to schedule classes for students, using the college’s
master schedule to determine the times and room numbers for each
student’s class. When the optimal arrangement of classes for each
student has been determined, each student’s class schedule will be
printed and distributed.

Copyright © 2011 Pearson Addison-Wesley

Describing the Classes

• The next step is to describe classes in terms of attributes and operations

– Attributes are implemented as properties

• Characteristics of each object

• Describe the common properties of class objects

– Operations are implemented as methods

• Actions the class objects perform

• Messages they can respond to

Chapter 12 – Slide 12

Copyright © 2011 Pearson Addison-Wesley

Interface and Implementation

• The class interface is the portion of the class that is visible to the
programmer

• The client program is written to use a class

– Refers to the client-server relationship between a class and the
programs that use it

• The class implementation is the portion of the class that is hidden
from client programs

– Created from private member variables, properties, and
methods

– The hiding of data and procedures in a class is achieved through
a process called encapsulation

– Visualize the class as a capsule around its data and procedures

Chapter 12 – Slide 13

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 12.2

CREATING A CLASS

To create a class in Visual Basic, you create a class declaration.

The class declaration specifies the member variables, properties,

methods, and events that belong to the class.

Copyright © 2011 Pearson Addison-Wesley

Class Declaration and Adding a Class

• You create a class in Visual Basic with a class declaration using the
following general format:

– ClassName is the name of the class

– MemberDeclarations are the declarations for all the variables,
constants, and methods that will belong to the class

• To add a class declaration to a Windows application project:

1. Click Project on the menu bar, the click Add Class

2. Change the default name that appears in the Name text box

3. Click the Add button on the Add New Item dialog box

Chapter 12 – Slide 15

Public Class ClassName
MemberDeclarations

End Class

Copyright © 2011 Pearson Addison-Wesley

The Add New Item Dialog Box

Chapter 12 – Slide 16

Copyright © 2011 Pearson Addison-Wesley

Member Variables

• A member variable is a variable that is declared inside a class declaration
using the following general format:

– AccessSpecifier determines the accessibility of the variable

• Public access outside of the class or assembly

• Friend access only by other classes inside the same assembly

• Private access only by statements inside the class declaration

– VariableName is the name of the variable

– DataType is the variable’s data type

• As with structures, a class declaration does not create an instance of the
class

– To work with a class, you must create class objects, which are
instances of the class

Chapter 12 – Slide 17

AccessSpecifer VariableName As DataType

Copyright © 2011 Pearson Addison-Wesley

Creating an Instance of a Class

• A two-step process creates an instance of a class

• Declare a variable whose type is the class

• Create instance of the class with New keyword and
assign the instance to the variable

• Or you can accomplish both steps in one statement

Chapter 12 – Slide 18

Dim freshman As New Student

Dim freshman As Student

freshman = New Student

Copyright © 2011 Pearson Addison-Wesley

Accessing Members

• Once created, you can work with a class object’s Public members in code

– Access the Public members with the dot (.) operator

– Suppose the Student class was declared as follows:

– The following assigns values to each of the member variables for an
instance of the Student class named freshman:

Chapter 12 – Slide 19

Public Class Student
Public strLastName As String
Public strFirstName As String
Public strId As String

End Class

' Assign values to the object's members.
freshman.strFirstName = "Joy"
freshman.strLastName = "Robinson"
freshman.strId = "23G794"

Copyright © 2011 Pearson Addison-Wesley

Property Procedures

• A property procedure is a function that defines a class property using the
following general format:

• PropertyName is the name of the property procedure

• DataType is the type of data that can be assigned to the property

• The Get section holds the code that executes when the value is retrieved

• The Set section hold the code that executes when the value is stored

Chapter 12 – Slide 20

Public Property PropertyName() As DataType
Get

Statements
End Get
Set(ParameterDeclaration)

Statements
End Set

End Property

Copyright © 2011 Pearson Addison-Wesley

Example Class Property

Chapter 12 – Slide 21

Public Class Student
Private strLastName As String ' Holds last name
Private strFirstName As String ' Holds first name
Private strId As String ' Holds ID number
Private dblTestAverage As Double ' Holds test average

Public Property TestAverage() As Double
Get

Return dblTestAverage
End Get
Set(ByVal value As Double)

dblTestAverage = value
End Set

End Property

Copyright © 2011 Pearson Addison-Wesley

Example Class Property Use

• Stores the value 82.3 in the TestAverage property using the
Set section of the property procedure

• Any statement that retrieves the value in the TestAverage
property causes the Get section of the property procedure to
execute

Chapter 12 – Slide 22

Dim freshman As New Student
freshman.TestAverage = 82.3

dblAverage = freshman.TestAverage

MessageBox.Show(freshman.TestAverage.ToString())

Copyright © 2011 Pearson Addison-Wesley

Read-Only Properties

• Client programs can query a read-only property and get is
value, but cannot modify it

• Here is the general format of a read-only property procedure:

– Uses the ReadOnly keword

– Has no Set section

– Only capable of returning a value

Chapter 12 – Slide 23

Public ReadOnly Property PropertyName() As DataType
Get

Statements
End Get

End Property

Copyright © 2011 Pearson Addison-Wesley

Read-Only Property Example

Chapter 12 – Slide 24

Public ReadOnly Property Grade() As String
Get

Dim strGrade As String

If dblTestAverage >= 90.0 Then
strGrade = "A"

ElseIf dblTestAverage >= 80.0 Then
strGrade = "B"

ElseIf dblTestAverage >= 70.0 Then
strGrade = "C"

ElseIf dblTestAverage >= 60.0 Then
strGrade = "D"

Else
strGrade = "F"

End If

Return strGrade
End Get

End Property

Copyright © 2011 Pearson Addison-Wesley

Removing Objects and Garbage Collection

• Memory space is consumed when objects are
instantiated

• Objects no longer needed should be removed
• Set object variable to Nothing so it no longer

references the object

• Object is a candidate for garbage collection when
it is no longer referenced by any object variable

• The garbage collector monitors for and
automatically destroys objects no longer needed

Chapter 12 – Slide 25

freshman = Nothing

Copyright © 2011 Pearson Addison-Wesley

Going Out of Scope

• An object variable is local to the procedure in which it is declared

– Will be removed from memory when the procedure ends

– This is called going out of scope

– The object variable will not be removed from memory if it is
referenced by a variable that is outside of the procedure

Chapter 12 – Slide 26

Sub CreateStudent()
Dim sophomore As New Student ' Create an instance of the Student class.
' Assign values to its properties.
sophomore.FirstName = "Travis"
sophomore.LastName = "Barnes"
sophomore.IdNumber = "17H495"
sophomore.TestAverage = 94.7
g_studentVar = sophomore ' Assign the object to a global variable.
End Sub

Copyright © 2011 Pearson Addison-Wesley

Comparing Object Variables with the Is and
IsNot Operators

• The Is operator determines if two variables reference the same object

• The IsNot operator determines if two variables do not reference the same
object

• The special value Nothing determines if the variable references any object

Chapter 12 – Slide 27

If collegeStudent Is transferStudent Then
' Perform some action

End If

If collegeStudent IsNot transferStudent Then
' Perform some action

End If

If collegeStudent Is Nothing Then
' Perform some action

End If
If transferStudent IsNot Nothing Then

' Perform some action
End If

Copyright © 2011 Pearson Addison-Wesley

Creating an Array of Objects

• You can create an array of object variables

• Then create an object for each element to reference

• Use another loop to release the memory used by the array

Chapter 12 – Slide 28

Dim mathStudents(9) As Student
Dim intCount As Integer
For intCount = 0 To 9

mathStudents(intCount) = New Student
Next

Dim intCount As Integer

For intCount = 0 To 9
mathStudents(intCount) = Nothing

Next

Copyright © 2011 Pearson Addison-Wesley

Writing Procedures and Functions That Work
with Objects

• Can use object variables as arguments to a
procedure or function

– Example: student object s as an argument

• Pass object variable with the procedure call

Chapter 12 – Slide 29

Sub DisplayStudentGrade(ByVal s As Student)
' Displays a student's grade.
MessageBox.Show("The grade for " & s.FirstName &

" " & s.LastName & " is " &
s.TestGrade.ToString())

End Sub

DisplayStudentGrade(freshman)

Copyright © 2011 Pearson Addison-Wesley

Passing Objects by Value and by Reference

• If argument is declared using ByRef

– Values of object properties may be changed

– The original object variable may be assigned to a
different object

• If argument is declared using ByVal

– Values of object properties may be changed

– The original object variable may not be assigned
to a different object

Chapter 12 – Slide 30

Copyright © 2011 Pearson Addison-Wesley

Returning an Object from a Function

• Example below instantiates a student object

• Prompts the user for and sets its property values

• Then returns the instantiated object

Chapter 12 – Slide 31

Function GetStudent() As Student
Dim s As New Student
s.FirstName = InputBox("Enter the student's first name.")
s.LastName = InputBox("Enter the student's last name.")
s.IdNumber = InputBox("Enter the student's ID number.")
s.TestAverage = CDbl(InputBox("Enter the student's test average."))
Return s

End Function

Dim freshman As Student = GetStudent()

Copyright © 2011 Pearson Addison-Wesley

Methods

• A method is a procedure or
function that is a member
of a class

– Performs some
operation on the data
stored in the class

– For example, the
following statement calls
the Clear method of the
Student object freshman

Chapter 12 – Slide 32

Public Class Student
' Member variables
Private strLastName As String
Private strFirstName As String
Private strId As String
Private dblTestAverage As Double

(...Property procedures omitted...)

' Clear method
Public Sub Clear()

strFirstName = String.Empty
strLastName = String.Empty
strId = String.Empty
dblTestAverage = 0.0

End Sub
End Class

freshman.Clear()

Copyright © 2011 Pearson Addison-Wesley

Constructors

• A constructor is a method that
is automatically called when
an instance of the class is
created
– Think of constructors as

initialization routines
– Useful for initializing

member variables or other
startup operations

• To create a constructor:
– Create a method named

New inside the class
– Alternatively, select New

from the method name
drop-down list

Chapter 12 – Slide 33

Public Class Student
' Member variables
Private strLastName As String
Private strFirstName As String
Private strId As String
Private dblTestAverage As Double

' Constructor
Public Sub New()

strFirstName = "(unknown)"
strLastName = "(unknown)"
strId = "(unknown)"
dblTestAverage = 0.0

End Sub
(The rest of this class is omitted.)

End Class

Copyright © 2011 Pearson Addison-Wesley

Finalizers

• A finalizer is a class method named Finalize

– Automatically called just before an instance of the class is
removed from memory

• To create a Finalize method:

– Select Finalize from the method name drop-down list

– The following code template is created for you:

Chapter 12 – Slide 34

Protected Overrides Sub Finalize()
MyBase.Finalize()
' Perform some action

End Sub

Copyright © 2011 Pearson Addison-Wesley

Displaying Messages in the Output Window

• The Output window is a valuable debugging tool

• Display it by clicking the View menu, Other Windows, then Output or you
can press the Ctrl + Alt + O key combination

• Display your own messages with the Debug.WriteLine method using the
following general format:

• Enable debug messages by inserting the following in your startup form’s
Load event handler:

Chapter 12 – Slide 35

Debug.WriteLine(Output)

Debug.Listeners.Add(New ConsoleTraceListener())

Copyright © 2011 Pearson Addison-Wesley

Tutorial 12-1

• You create the Student class

• An application that saves student data to a file

• Display messages in the output window

Chapter 12 – Slide 36

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 12.3

COLLECTIONS

A collection holds a group of items. It automatically expands and

shrinks in size to accommodate the items added to it. It allows

items to be stored with associated key values, which may then be

used in searches.

Copyright © 2011 Pearson Addison-Wesley

Collections

• A collection is similar to an array

– A single unit that contains several items

– Access individual items with an index value

• Differences from an array include the following:

– Collections index values begin at 1

– Collections automatically expand as items are added
and shrink as items are removed

– Items in a collection do not have to be of the same
data type

Chapter 12 – Slide 38

Copyright © 2011 Pearson Addison-Wesley

Creating an Instance of the Collection Class

• Visual Basic provides a class named Collection

– To create an instance of the Collection class:

– Declare a variable whose type is the Collection class

– Create instance of the class with New keyword and assign
the instance to the variable

– Or you can accomplish both steps in one statement

Chapter 12 – Slide 39

Dim customers As Collection

customers = New Collection

Dim customers As New Collection

Copyright © 2011 Pearson Addison-Wesley

Adding Items to a Collection

• You add items to a collection with the Add method using the
following general format:

– CollectionName is the name of an object variable that
references a collection

– Item is the object, variable, or value that is to be added to
the collection

– Key is an optional string expression that can be used to
search for items

• Must be unique for each member of a collection

Chapter 12 – Slide 40

CollectionName.Add(Item [, Key])

Copyright © 2011 Pearson Addison-Wesley

Examples of Adding Items to a Collection

• Declaring a Collection object

• Inserting a value into the collection

• Inserting a value into the collection with an optional key value

• Handling duplicate key exceptions

Chapter 12 – Slide 41

Private customers As New Collection

customers.Add(myCustomer)

customers.Add(myCustomer, myCustomer.Name)

Try
customers.Add(myCustomer, myCustomer.Name)

Catch ex as ArgumentException
MessageBox.Show(ex.Message)

End Try

Copyright © 2011 Pearson Addison-Wesley

Accessing Items by their Indexes

• You can access an item in a collection by passing an integer to the Item
method as follows:

– CollectionName is the name of the collection object variable

– index is the integer index of the item that you want to retrieve

– The Item method returns an Object

– Call the Ctype method to cast the Object to the type needed

– Item is the default method for collections, so you can use an
abbreviated format, as in the following example:

Chapter 12 – Slide 42

CollectionName.Item(index)

Dim cust As Customer = CType(customers.Item(1), Customer)
MessageBox.Show("Customer found: " & cust.Name & ": "& cust.Phone)

Dim cust As Customer = CType(customers(3), Customer)

Copyright © 2011 Pearson Addison-Wesley

The IndexOutOfRange Exception

• An IndexOutOfRange exception occurs if an index is used that does not
match any item in a collection

– The following code example shows how to handle the exception:

Chapter 12 – Slide 43

Try
Dim cust As Customer

Dim index As Integer = CInt(txtIndex.Text)

cust = CType(customers.Item(index), Customer)

MessageBox.Show("Customer found: " & cust.Name & ": " & cust.Phone)

Catch ex As IndexOutOfRangeException
MessageBox.Show(ex.Message)

End Try

Copyright © 2011 Pearson Addison-Wesley

The Count Property

• Each collection has a Count property

– Holds the number of items in the collection

• The following code example:

– Uses a For Next loop

– With the Count property as the upper limit

– To add the contents of the collection to a list box

Chapter 12 – Slide 44

Dim intX As Integer
For intX = 1 To names.Count

lstNames.Items.Add(names(intX).ToString())
Next

Copyright © 2011 Pearson Addison-Wesley

Searching for an Item by Key Value Using the
Item Method

• The Item method can be used to retrieve an item with a specific key value
using the following general format:

– CollectionName is the name of a collection

– Expression can be a numeric or string expression

• If a string expression is used

– The key value that matches the string is returned

• If a numeric expression is used, it becomes the index value

– The member at the specified index is returned

– If no member exists with an index or key value matching Expression,
an IndexOutOfRange exception occurs

Chapter 12 – Slide 45

CollectionName.Item(Expression)

Dim s As Student = CType(studentCollection.Item("49812"), Student)

Copyright © 2011 Pearson Addison-Wesley

Using References versus Copies

• When an item in a collection is:

– A fundamental Visual Basic Type

• Integer, String, Decimal, and so on

• Only a copy of the member is returned

• its value cannot be changed

– A class object

• A reference to the object is returned

• Its value can be changed

Chapter 12 – Slide 46

Copyright © 2011 Pearson Addison-Wesley

Using the For Each…Next Loop with a Collection

• You may use the For Each…Next loop to
access the individual members of a collection

– Eliminates the need for a counter variable

– For example:

Chapter 12 – Slide 47

Dim s As Student
For Each s In studentCollection

MessageBox.Show(s.LastName)
Next

Copyright © 2011 Pearson Addison-Wesley

Removing Members

• Use the Remove method to remove a member from a
collection using the following general format:

– CollectionName is the name of a collection

– Expression can be a numeric or string expression

• If a string expression is used

– The key value that matches the string is removed

– An ArgumentExeception occurs if the key value does not
match an item in the collection

• If a numeric expression is used, it becomes the index value

– The member at the specified index is removed

– An IndexOutOfRange exception occurs if the index does not
match any item in the collection

Chapter 12 – Slide 48

CollectionName.Remove(Expression)

Copyright © 2011 Pearson Addison-Wesley

Preventing Exceptions when Removing Members

• To avoid throwing an exception with the Remove method:
– Always check the range of the index

– Make sure a key value exists before using it

Chapter 12 – Slide 49

Dim intIndex As Integer
' (assign value to intIndex...)
If intIndex > 0 and intIndex <= studentCollection.Count Then

studentCollection.Remove(intIndex)
End If

Dim strKeyToRemove As String
' (assign value to strKeyToRemove...)
If studentCollection.Contains(strKeyToRemove) Then

studentCollection.Remove(strKeyToRemove))
End If

Copyright © 2011 Pearson Addison-Wesley

Writing Sub Procedures and Functions That Use
Collections

• Sub procedures and functions can accept
collections as arguments

– Remember that a collection is an instance of a
class

– Follow the same guidelines for:

• Passing a class object as an argument

• Returning a class object from a function

Chapter 12 – Slide 50

Copyright © 2011 Pearson Addison-Wesley

Relating the Items in Parallel Collections

• Sometimes it is useful to store related data in two or more parallel
collections

• Use a unique key value to relate the items in the collections

– An ID or employee number for instance

– For example, the following code works with items in parallel
collections by using the employee number 55678 as the key value

Chapter 12 – Slide 51

Dim hoursWorked As New Collection ' To hold hours worked
Dim payRates As New Collection ' To hold hourly pay rates

hoursWorked.Add(40, "55678") ' Store a value using the key value
payRates.Add(12.5, "55678") ' Use the same key value again

' The key value is used once again when retrieving the related data
sngGrossPay = hoursWorked.Item("55678") * payRate.Item("55678")

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 12.4

FOCUS ON PROBLEM SOLVING: CREATING
THE STUDENT COLLECTION APPLICATION

Create the Student Collection application

Copyright © 2011 Pearson Addison-Wesley

The MainForm Form

• Displays a list of student ID numbers in the list box

• When an ID number is selected, student data is displayed in the labels

• The Add Student button causes the AddForm form to be displayed

• The Remove button removes a student with the currently selected ID
number

Chapter 12 – Slide 53

Copyright © 2011 Pearson Addison-Wesley

The AddForm Form

• Allows the user to enter student data in the text boxes

• The Add button adds the student data to the collections

Chapter 12 – Slide 54

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 12.5

THE OBJECT BROWSER

The Object Browser is a dialog box that allows you to browse all

classes and components available to your project.

Copyright © 2011 Pearson Addison-Wesley

The Object Browser

• The Object Browser is a dialog box that displays
information about objects

• You can use the object browser to examine:

– Classes you have created in your project

– Namespaces, classes, and other components that
Visual Basic makes available to your project

• Tutorial 12-3 guides you through the process of using
the Object browser to examine the classes you
created in the Student Collection project

Chapter 12 – Slide 56

Addison Wesley

is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

Section 12.6

INTRODUCTION TO INHERITANCE

Inheritance allows a new class to be based on an existing class. The

new class inherits the accessible member variables, methods, and

properties of the class on which it is based.

Copyright © 2011 Pearson Addison-Wesley

What is Inheritance?

• Inheritance allows new classes to derive their
characteristics from existing classes

• The Student class may have several types of
students such as
– GraduateStudent
– ExchangeStudent
– StudentEmployee

• These can become new classes and share all the
characteristics of the Student class

• Each new class would then add specialized
characteristics that differentiate them

Chapter 12 – Slide 58

Copyright © 2011 Pearson Addison-Wesley

Base and Derived Classes

• The Base Class is a general-purpose class that
other classes may be based on

– Think of the base class as a parent

• A Derived Class is based on the base class and
inherits characteristics from it

– Think of the derived class as a child

Chapter 12 – Slide 59

Copyright © 2011 Pearson Addison-Wesley

The Vehicle Base Class

• Consider a Vehicle class with the following:
– Private variable for number of passengers

– Private variable for miles per gallon

– Public property for number of passengers
(Passengers)

– Public property for miles per gallon
(MilesPerGallon)

• This class holds general data about a vehicle

• Can create more specialized classes from the
Vehicle class

Chapter 12 – Slide 60

Copyright © 2011 Pearson Addison-Wesley

The Truck Derived Class

• Truck class derived from Vehicle class
– Inherits all non-private methods, properties, and

variables of Vehicle class

• Truck class defines two properties of its own
– MaxCargoWeight – holds top cargo weight

– FourWheelDrive – indicates if truck is 4WD

• The Vehicle Inheritance program in the Chapter
12 student sample programs folder contains the
code for the Vehicle and Truck classes

Chapter 12 – Slide 61

Copyright © 2011 Pearson Addison-Wesley

Overriding Properties and Methods

• Sometimes a base class property procedure or
method must work differently for a derived class

– You can override base class method or property

– You must write the method or property as desired in
the derived class using same name

• When an object of the derived class accesses the
property or calls the method

– The overridden version in derived class is used

– The base class version is not used

Chapter 12 – Slide 62

Copyright © 2011 Pearson Addison-Wesley

Overriding Procedure Example

• Vehicle class has no restriction on number of
passengers

• But may wish to restrict the Truck class to two
passengers at most

• Can override Vehicle class Passengers property
by:

– Coding Passengers property in derived class

– Specify Overridable keyword in base class property

– Specify Overrides keyword in derived class property

Chapter 12 – Slide 63

Copyright © 2011 Pearson Addison-Wesley

Overridable Property Procedure in the Base Class
Example

• Overridable keyword added to Vehicle base
class property procedure

Chapter 12 – Slide 64

Public Overridable Property Passengers() As Integer
Get

Return intPassengers
End Get
Set(ByVal value As Integer)

intPassengers = value
End Set

End Property

Copyright © 2011 Pearson Addison-Wesley

Overridden Property Procedure in the Derived
Class Example

• Overrides keyword and new logic added to Truck derived class property
procedure

• The MyBase keyword refers to the base class

Chapter 12 – Slide 65

Public Overrides Property Passengers() As Integer
Get

Return MyBase.Passengers
End Get
Set(ByVal value As Integer)

If value >= 1 And value <= 2 Then
MyBase.Passengers = value

Else
MessageBox.Show("Passengers must be 1 or 2.", "Error")

End If
End Set

End Property

Copyright © 2011 Pearson Addison-Wesley

Overriding Methods

• The general format of a procedure that overrides a base class procedure is
as follows:

• The general format of a function that overrides a base class function is as
follows:

• When overriding methods and procedures, remember that:

– A derived class cannot access methods or property procedures in the base
class that are declared as Private

– A derived class must keep the same access level as the base class

Chapter 12 – Slide 66

AccessSpecifier Overrides Sub ProcedureName()
Statements

End Sub

AccessSpecifier Overrides Function FunctionName() As DataType
Statements

End Sub

Copyright © 2011 Pearson Addison-Wesley

Overriding the ToString Method

• Every class that you create in Visual Basic is derived from a
built-in class named Object
– The Object class has a method named ToString

– You can override this method so it returns a string representation of
the data stored in an object

Chapter 12 – Slide 67

' Overridden ToString method
Public Overrides Function ToString() As String

' Return a string representation of a vehicle.
Dim str As String

str = "Passengers: " & intPassengers.ToString() &
" MPG: " & dblMPG.ToString()

Return str
End Function

Copyright © 2011 Pearson Addison-Wesley

Base Class and Derived Class Constructors

• A constructor (named New) may be defined
for both the base class and a derived class

• When a new object of the derived class is
created, both constructors are executed

– The constructor of the base class will be called
first

– Then the constructor of the derived class will be
called

Chapter 12 – Slide 68

Copyright © 2011 Pearson Addison-Wesley

Base and Derived Class Constructors Example

Chapter 12 – Slide 69

Public Class Vehicle

Public Sub New()
MessageBox.Show("This is the base class constructor.")

End Sub
' (other properties and methods...)

End Class

Public Class Truck
Inherits Vehicle

Public Sub New()
MessageBox.Show("This is the derived class constructor.")

End Sub
' (other properties and methods...)

End Class

Copyright © 2011 Pearson Addison-Wesley

Protected Members

• The Protected access specifier may be used in the
declaration of a base class member, such as the
following:

– Protected base class members are treated as

• Public to classes derived from this base

• Private to classes not derived from this base

• In Tutorial 12-4, you complete an application that
uses inheritance

Chapter 12 – Slide 70

Protected decCost As Decimal

